I consult, write, and speak on running better technology businesses (tech firms and IT captives) and the things that make it possible: good governance behaviors (activist investing in IT), what matters most (results, not effort), how we organize (restructure from the technologically abstract to the business concrete), how we execute and manage (replacing industrial with professional), how we plan (debunking the myth of control), and how we pay the bills (capital-intensive financing and budgeting in an agile world). I am increasingly interested in robustness over optimization.

I work for ThoughtWorks, the global leader in software delivery and consulting.

Friday, June 11, 2010

Short Run Robustness, Long Run Resiliency

There is no such thing as a "long run" in practice --what happens before the long run matters. The problem of using the notion of "long run", or what mathematicians call the "asymptotic" property (what happens when you extend something to infinity), is that it usually makes us blind to what happens before the long run. ...
[L]ife takes place in the pre-asymptote, not in some Platonic long run, and some properties that hold in the pre-asymptote (or the short run) can be markedly divergent from those that take place in the long run. So theory, even if it works, meets a short term reality that has more texture. Few understand that there is generally no such thing as a reachable long run except as a mathematical construct to solve equations - to assume a long run in a complex system you need to assume that nothing new will emerge.

Mr. Taleb is commenting on economists and financial modelers, but he could just as easily be commenting on IT planning.

Assertions of long-term consistency and stability are baked into IT plans. For example, people are expected to remain on the payroll indefinately; but even if they don’t, they’re largely interchangeable with new hires. Requirements will be relatively static, specifically and completely defined, and universally understood. System integration will be logical, straightforward and seamless. Everybody will be fully competent and sufficiently skilled to meet expectations of performance.

Asserting that things are fact doesn’t make them so.

Of course, we never make it to the long run in IT. People change roles or exit. Technology doesn't work together as seamlessly as we thought it would. Our host firm makes an acquisition that renders half of our goals irrelevant. Nobody knows how to interface with legacy systems. The historically benign financial instruments we trade have seen a sudden 10x increase in volume and volatility off the charts. A key supplier goes out of business. Our chief rival just added a fantastic new feature that we don't have.

Theoretical plans will always meet a short-term reality that has more texture.

* * *

After the crisis of 2008, [Robert Merton] defended the risk taking caused by economists, giving the argument that “it was a Black Swan” simply because he did not see it coming, hence the theories were fine. He did not make the leap that, since we do not see them coming, we need to be robust to these events. Normally, these people exit the gene pool –academic tenure holds them a bit longer.
- ibid.

The long-term resiliency of a business is a function of how robustly it responds to and capitalizes on the ebbs and flows of a never-ending series of short runs. The long-term resiliency if an IT organization is no different.

This presents an obvious leadership trap, the “strategy as a sum of tactical decisions” problem. Moving with the ebb and flow makes it hard to see the wood for the trees. An organization can quickly devolve into a form of organized chaos, where it reacts without purpose instead of advancing an agenda. Reacting with purpose requires continuous reconciliation of actions with a strong set of goals and guiding principles.

But it also presents a bigger, and very personal, leadership challenge. We must avoid being hypnotized by the elaborate models we create to explain our (assumed) success. The more a person invests in models, plans and forecasts, the more they will believe they see artistic qualities in them. They will hold the models in higher esteem than the facts around them, insisting on reconciling the irrational behavior of the world to their (obviously) more rational model. This is hubris. Obstinance for being theoretically right but factually wrong is a short path to a quick exit.

Theoretical results can't be monetized; only real results can.